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BACKGROUND:
The rising incidence of liver diseases, particularly those induced by drugs, underscores the urgent need for safer, more effective therapeutic interventions. Liver

injury, characterized by its complex pathophysiology, can lead to severe outcomes, highlighting the limitations of traditional therapies, which often entail adverse
effects. This backdrop fuels the exploration of natural sources like polysaccharides extracted from medicinal plants, which are recognized for their antioxidative
and anti-inflammatory properties. This study focuses on Dendrobium loddigesii Rolfe polysaccharides (DLPs), evaluated for their hepatoprotective effects
against carbon tetrachloride (CCL,)-induced liver injury in murine models. A thorough analysis was conducted, including the extraction and structural
characterization of DLPs, along with the assessment of in vivo efficacy through serum biochemical markers, liver histopathology, and metabolomic profiling.
These findings underscore DLPs’ potential as a natural therapeutic agent, meriting further clinical trials to assess its efficacy and safety in liver protection.
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Figure 3: Effects of DLPs on the general state and organs of CCL,-induced liver injury in mice. (A) Body weight changes in mice. (B)
S 4 A wcornsrss | v Liver organ index (liver weight/body weight). (C) Kidney organ index (kidney weight/body weight). (D) Spleen organ index (spleen
- - e romn) weight/body weight). Data were expressed as mean + SEM from nine mice in each group. *p < 0.05 compared to control group
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1. Basic structural characterization of DLPs
Figure 4: DLPs can attenuate blood biochemical indicators and liver pathological changes in mice with CCL,-induced liver injury.
(A) Morphology of the liver and histopathological examination of the liver were performed using H&E staining and Masson staining
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CONCLUSION : Our pioneering study on DLPs offers valuable insights into their structural properties and substantial evidence of their hepatoprotective effects.
The correlation between the structural characteristics and pharmacological actions of DLPs pave the way for future research and development of effective, safe,
and natural hepatoprotective agents. The methodologies and findings reported herein contribute significantly to the field of pharmacognosy and support the
therapeutic potential of traditional Chinese medicinal plants in modern medicine applications.
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